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The process of optimal design can be imagined as the process of diminishing the set of admissible 
variants. The use of necessary optimality conditions based on nonlocal variations of control parameters allows 
one effectively to take into account the entire set of variables that determine the structure of a layered 
system: the physical properties of the materials of the layers, the layer thickness, and also the total thickness 
of the system of layers [1-3]. To find all variants of layered structures that realize the limiting possibilities, 
it is necessary to distinguish the entire set of solutions that satisfy the necessary optimality conditions. The 
effectiveness of distinguishing these solutions depends on the extent to which the dependence of the quality 
functional on the set of control parameters is of a multiextremal character. The results of computational 
experiments show that, in problems of synthesis of layered structures under wave actions, the number of 
variants that satisfy the necessary optimality conditions is rather considerable. Therefore, the choice of all 
layered structures that lead to limiting possibilities involves significant difficulties. 

In this connection, we adopt another method of studying the limiting possibilities. It is concerned with 
studying the existence of internal symmetry in the interrelationship of parameters that constitute an optimal 
structure. The existence of such symmetry in synthesis problems indicates that structures that realize limiting 
possibilities will group only within a certain narrow compact set Q. 

The internal symmetry in the relationship of elements of the system can lead to the fact that the 
structures that realize limiting possibilities will satisfy additional constraints. Finding such constraints allows 
one to considerably decrease the dimension of the problem, because structures that realize limiting possibilities 
may, in addition, satisfy a certain system of m equations: Mj(u*  = 0). The set of solutions of this system is 
the desired compact set: Q = {u:  M j(u )  = O, j = 1, m }. 

In some cases, finding such a system of equations allows one to completely solve the synthesis problem. 
The main problem here is to develop an analytic procedure for describing the boundaries of the compact set 
being studied. 

Therefore, it is of interest to study synthesis problems for layered systems in which structures 
that realize the limiting possibilities of controlling wave-field parameters exhibit internal symmetry. The 
investigation of the possibility of distinguishing a narrow compact set Q that contains the entire set of variants 
realizing the limiting possibilities leads to a qualitatively new method of decreasing the set of admissible 
structures and developing effective synthesis methods 

We study three types of synthesis problems. 
1. Oblique Incidence of an Electromagnetic Wave with Horizontal Polarization on a System of Nonabsorbing 

Magnetodielectric Layers. The propagation of an electromagnetic wave in a layered structure can be described 
by the following boundary-value problem: 

/ ( z )  = tz(z)g(z),  g(z)  = -k2o(W)u(z ) f ( z ) ,  0 <~ z <~ 1, 
(1) 

g(O) - i/qow(W) cos 00(2 - f(O)), g(l) = ikuppe r (W)  cos  Oupperf(l ). 
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Here f (z)  (0 <<. z ~ 1) is the complex ampli tude of the electromagnetic wave, 00 is the angle of incidence of 
the electromagnetic w a v e ,  0uppe t is the angle at which the electromagnetic wave leaves the layered structure: 
cos0upper = (1 - (elow/eupper)sin 2 0o) 1/2, k0 = w/c is the wavenumber in vacuum, c is the speed of light, 
/qow(W) = (w/c) eV,'~o~ , kupper(W) = ( w / c ) ~ ,  u(z) = (e(z)#(z)-elowSin 2 0o)/#(z), e(z), #(z) (0 <~ z <~ l) 
is the distribution of the permit t iv i ty  and permeability across the thickness of the layered structure,  and Oow 
and e~pper are the permit t ivi t ies  of half-spaces that  border the layered structure.  The  physical parameters 
of the layered s t ructure  are related by the functional dependence # = #(e), which allows one to determine 
uniquely the permeabili ty of the admissible material from its known permittivity. In this case, the permit t ivi ty 
e will be the only independent  physical parameter.  Let the admissible set consist of two materials. For each 
z E [0, l], the following inclusion holds: 

~(z) ~ A. (2) 

It is required to design a layered structure with extreme spectral characteristic, whose parameters lead 
to a min imum value of the quality criterion 

~/m&x 

J =  / r(w)~'(w)dw (3) 
Wmin 

under the extra condition that ,  at a certain frequency w = w*, the functional characteristic of the design 
structure should be maximal: 

9"(w*) = ~*.(w*). (4) 

Here 9"(w.) is the energy transmission factor for the electromagnetic wave: 

~(w) -- cos Oupper ~ mod2(f ( l  ,w)), 
cos Oo V elow 

9"~.(w*) is the max imum energy transmission factor for frequency w = w*, and ~-(w) is the weight function 
[ -1  ~< r(w) ~< 1]. The  set of globally optimal  solutions for the optimal  synthesis problem (1)-(4) is among the 
globally optimal  solutions of the optimal synthesis problem for monochromatic  action with frequency w = w*. 
The Hamiltonian function for monochromatic  action with frequency w = w* is of the form 

;~ ) l z=~s (z ,w*)+~(~ )~ . (~ ,w*) ,  bs_~ .<~.<b~ 0 = I , N ) ,  (5) H( 

where bs are the coordinates of the boundary between the layers (s = 1, N - 1), N is the number  of layers, 
and 

ar 
1 R.e fs(Z,W), ~(z,w) = - E  Oz 

(~) 
Zs(z,w) = 1-- Re Of~(z,,.) #s Oz Cs(Z,W), bs-1 ~< z <~ b~ (s = 1, N) ;  

r (bs-1 <~ z <~ bs, s = l, N) is the solution of the conjugate system 

a2Os(z,w) 
+ k~(w)r = 0, b~_, <. z .<. b~ 

Oz 2 
OCs(b~-l,w) es Or 

r = Cs-l(b~-l,w), Oz es-1 Oz 

Or i OCg+l(1,w) 
az + iko(w)r = 0, r  + kN+l(w) az 

(s = 0, N + 1), 

O = I , N + I ) ,  

- 2v(w)fg+l( l ,w),  
(7) 

ks(w) = w Ce 
- -  s#s-elowSin 200 ( s = l , N ) .  
c 

Let N* be the optimal  number of layers, e s (s = 1 ,N*)  the optimal physical parameters of the 
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materials of the layers, b* (s = 1, N* - 1) the optimal coordinates of the boundary between the layers, l* 
(/rain ~< l* ~</max) the optimal thickness of the system of layers (/rain and Imax the lower and upper boundaries 
per thickness of the system of layers). 

Then, the condition 

] = max H( . ;  r b" (s 1, N* H(*; e*) �9 ,~A z' ,-1 ~< z ~< b* = ) (8) 

is satisfied. 
(The omitted arguments of the Hamiltonian function are calculated for the optimal solution.) 

If the optimal thickness l* E (/min, Imax), then, according to [4], we obtain 

H ( , ; e : ) I ,  = 0, b:_ 1 ~< z ~< b* (s = 1,N* ). (9) 

One can verify that, within the sth layer, the function c~s(z,w) satisfies the following third-order 
differential equation: 

03 o~s( z, o.,) O,~s( z, ~,) 
Oz 3 +4k~2(w) Oz =0, bs-1 <~z<~bs ( s = l , N ) .  (10) 

The function /3s(z,w) (6) also satisfies a similar equation. The general solution of Eq. (10) on the 
segment (bs-1, bs) is of the form 

o~s(z,w) = Us(w) sin (2ks(z - bs-1)) + Ds(w) cos (2ks(z - bs-1)) + Es(w), 

b,-1 ~< z ~< b, (s = 1 ,N) ,  (11) 

where C,(w), Ds(w), and E,(w) are indefinite functional dependences of the frequency w. 
Using the necessary optimality conditions (8) and the form of the functions o~s(z, oa) (11), one can 

show that, for the optimal solution, the following system holds, which describes the thicknesses and physical 
parameters of the layers of the optimal structure on both sides of the point of discontinuity: 

�9 * '7" *~#* * * k* * * * c o t ( k ; a ; )  = - - ~ ; c o t  ( k s _ l A s _ l )  + *~*s-1, ~s = r s c o t ( a _ I A s _ I )  - - c r s ~ s _  i .  (12) 

H e r e  

and As is the thickness of the sth layer; the subscripts s and s - 1 refer to inner layers. Analysis of relations 
(12) leads to the condition A* = A*_ 2. 

Thus, the interrelationship of parameters in the optimal structure exhibits internal symmetry. This 
internal symmetry property describes features of the internal relationship among groups of parameters of 
various types in the optimal structure: if the physical properties of the inner layers of the optimal structure 
are identical, their thicknesses are also identical. 

We introduce a set of permittivity distributions Q(A*). The elements of this set satisfy the conditions 

A* 
0 ~ As ~< (s = 1 ,N) ,  

2 ~ s # s  - elow sin 2 00 (13) 

A s = A s - 2  ( s = 4 ,  N - 1 ) ,  Nmin<~N<~Nm~x, 

where A* is the wavelength (A* = 2~'c/w*); [Nmia, Nmax] is the interval which includes the number of layers 
of the optimal structure. The quantities Nmin and Nmax can be evaluated analytically. 

In addition to the set Q(A*), we introduce a set of permeability distributions across the thickness of 
the structure Q0(A*). The elements of the set Q0(A*) satisfy the following system of relations: 

A* A* 
, 0<~ A2v ~< 

0 ~< A1 <~ 2~/~1#(~1) - ~low sin2 00 2~N/Z(~N) -- ~low sin2 00 
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A, = __  (s = 2, N -  1), Nmi n ~< N ~< Nmax, 
4~/es#s - elow sin 2 O0 

(14) 

[ 8/rain ~ / (g#(g )  -- elow sin 2 00)(g#(g) -- e,ow sin 2 00) ] 

,~low sin2 00) 
Nm~ LA.(X/g#(E)_eio,, ,sin20o+~/e#(e)_elo,, ,sin20o ) +4 .  

Here g and g are the permittivities of the materials of the admissible set. 
Joint analysis of the necessary optimality conditions and the properties of the boundary-value problem 

(1) leads to the following conclusions. 
When the optimal thickness of the structure l* is limiting, the set Q(A*) contains the set of all multilayer 

stru:tures that provide for a global minimum of the functional (3) in the synthesis problem (1)-(4). The 
optimization problem on the set Q(A*) is three-parameter. Therefore, the set of all multilayer structures 
E~. that provide for a global minimum of the quality functional in the synthesis problem (1)-(4) can be 
constructed fairly effectively and with high accuracy. 

When the optimal thickness l* E [Imin, lmax], the set Q0(A*) contains the set of all variants of 
multilayer structures that provide for a global minimum of the quality functional in the synthesis problem 
(1)-(4). Obviously, Q0(A*) C Q(A*), the optimization problem on the set Q0(A*) is one-parametric, and the 
independent control parameter will be the thickness of one of the boundary layers. 

Hence, if the frequency w = w* is known, then, when the optimal thickness l* is limiting, the initial 
multiparameter synthesis problem reduces to the three-parameter problem of minimization of criterion (3) on 
the set Q(A*) (13). When the optimal thickness l* is within the admissible interval of thicknesses, the initial 
multiparameter synthesis problem reduces to the one-parameter problem of minimization of criterion (3) on 
the set Q0(A*) (14). Thus, for this case, the results obtained allows one to completely solve the synthesis 
problem, because the set of all solutions that  minimize the quality criterion (3) can be found fairly effectively. 

Similar results are also valid for oblique incidence of an electromagnetic wave with vertical polarization 
on a system of magnetodielectric layers. In this case, the compact sets Q(A*) and Q0(A*) completely coincide in 
their structure with the corresponding sets Q(X*) and Q0(X*) (14) for an electromagnetic wave with horizontal 
polarization. 

2. N o r m a l  I n c i d e n c e  of  an E l e c t r o m a g n e t i c  Wave  on a S y s t e m  of  Die lec t r i c  Layers .  In the 
case of normal incidence of an electromagnetic wave (00 = 0), the set Q(X*) is of the form 

0 ~< As ~< (s = t , N ) ,  
2 ~/n~ - elow sin 2 00 

cot (ks+lAs+l)= ns cot(ksAs ) (s = 2, N - 2 ) ,  (15) rts+l 
[8 lmin.n_ nmin ] [8/m~_ nmax ] 

A* J ~< N <~ A* J + 4, 

where ns is the refraction index of the sth layer, and nmi n and nmax are the minimum and maximum refraction 
indices among the materials of the admissible set. 

In this case, the multiparameter synthesis problem reduces to the two-parameter optimization problem. 
The independent variables are the thicknesses of one boundary layer and the thickness of one inner layer. 

3. Oblique Incidence of an Acoustic Wave on a Multilayer Structure. We consider oblique incidence of 
a plane acoustic wave on a multilayer system consisting of plane layers. The layers are assumed to consist 
of materials in which shear waves do not propagate. Then, the propagation of acoustic waves in the layered 
medium can be described by the following boundary-value problem: 

](z)  = p(z)g(z), g(z) = -w2#[p(z)]f(z) ,  0 <~ z ~ t, 
(16) 
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g(O) = ilqow(W) cos O0 (2 - f(O)), g(l) = ikupper(tO) cos Oupper f(l). 
Plow Pupper 

Here f(z)  (0 <~ z <~ l) is the complex ampli tude of the acoustic wave, p(z) is the densi ty distr ibution across 
the thickness of the s t ructure  (0 ~< z ~< l), k'low(W) = W/qow, kupper(W) = ~/Cupper, Plow and qow are the 
density and the wave velocity in the  half-space from which the  wave comes, Puppet and Cupper are the density 
and the wave velocity in the  half-space to which the wave enters after leaving the s tructure,  

C~lpper 2 ~ 1/2 C--2(Z) -- --2 sin 2 O0 
sin 00) , /z(z) = Cl~ COS Oupper -~ 1 C~ow p(Z)  ' 

and c(z) (0 ~< z ~ l) is the velocity distribution of the acoustic wave across the thickness of the structure. 
The  physical parameters  of the  layered structure are assumed to be related by the  functional dependence 
c = c (p), which allows one to determine unambiguously the sound velocity in the material  from its density. 
In this case, the only independent  physical parameter  is the density p. Let the admissible set of materials A 
consist of only two materials with densities p and ~. For each z E [0, l], the inclusion 

p(z) E A (17) 

holds. 
The energy transmission factor for the acoustics wave is determined by solving the boundary-value 

problem (16) for z = l: 

T(w) = ClowPlow cos 0upper mod2f( l ,w) .  
CupperPupper COS O0 

It is required to design a layered structure with high reflection of acoustic waves in some spectral regions 
and with low reflection in other  regions. In a variational formulation, this problem involves minimization of 
the criterion 

(Mm~Lx 

J = / v(w)~(w)dw ~ rain (18) 

Wmin 

under the extra condition that ,  at frequency w = w*, the functional characteristics of the  s t ructure  must be 
maximal: 

cr(,,,*) = cry.(,,,*). (19) 

Here r(w) is weight function ( - 1  <~ r(w) ~ 1) and 9"**(w*) is the max imum energy transmission factor for 
the frequency w = w*. 

We introduce a set of density distributions Q(f*)f* = w*/27r. The elements of the set Q(f*) satisfy 
the relations 

1 
0 ~< As ~< (s = 1 , N ) ,  

2f* ~/c~ "2 - C~o 2 sin 2 00 (20) 

As = As-2 (s = 4, N - 1 ), Nmin ~ N ~< Nmax, 

where [Nmin, Nmax] is an interval tha t  contains the number  of layers of the optimal structure.  For the quantities 
Nmi, and Nmax, analytical est imates can be obtained. 

In addition to the set Q(f*), we introduce a set of density distributions Qo(f*). The elements of the 
set Qo(f*) satisfy the relations 

1 

0~<A1 <~ 2 , . / - 2 ]  VCl - 2 s i n  200' 0 ~  AN ~< 
C[o w 

1 
A s = (s = 2, N -  1), 

4f* x/c~ "2 -2 - -  Clo w sin 2 00 

. , 

- -  Clo w sln O0 

Nmin ~< N ~ Nmax, 

(21) 
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[ 8f* Imin ~/(?:-2 _ C~o 2 sin 2 00)(~.-2 _ C~o 2 sin 2 00) ] 

Nmin = [ ~/?:_-"-'-~ : c--~2w---~in--'- ~ bo 7 ~/~'---'-"-'~: c-'~2w si-----n 2 0-"~ J '  

[8f*lmax~/(~ -2 -- c~o2w sin 2 00)(~ -2 -- cl~2w sin 2 00)] 

Nmax = [ k/~ --'--~-- C~o"-'2~in ' ' ~  0~ 7 k/~ -'----~- c '~  si----n 2 0---'-o J + 4. 

Here ~ = c (p) and ~ = c(~ ). 
Joint analysis of the necessary optimality conditions and the properties of the boundary-value problem 

(16) leads to the following conclusions. 
When the optimal thickness of the structure l* is limiting, the set Q(f*) contains the set of all multilayer 

structures that provide for a global minimum of the quality functional (18) in the synthesis problem (16)-(19). 
The optimization problem on the set Q(f*) is three-parametric. Therefore, one can construct fairly effectively 
and with high accuracy the set of all multilayer structures E** that leads to a global minimum of the quality 
functional in the synthesis problem (16)-(19). 

When the optimal thickness l* E (/rain,/max) is limiting, the set Qo(f*) contains the set of all multilayer 
structures that provide for a global minimum of the quality functional (18) in the synthesis problem (16)- 
(19). In this case, Qo(f*) c Q(f*). The optimization problem on the set Qo(f*) is one-parametric, and the 
independent control parameter is the thickness of one of the boundary layers. 

Thus, if the frequency w = w* is known, then when the optimal thickness l* is limiting, the initial 
multiparameter synthesis problem reduces to the three-parameter problem of minimization of criterion (18) 
on the set Q(f*) (20). If l* E (/rain,/max), the initial multiparameter synthesis problem reduces to the one- 
parameter problem of minimization of criterion (18) on the set Q0(f*) (21). For this case, the result obtained 
allows one to completely solve the synthesis problem, because the set of all solutions that provide for a global 
minimum of the quality criterion (10) can be found effectively. 
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